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Abstract

Humans learn to play video games significantly
faster than state-of-the-art reinforcement learn-
ing (RL) algorithms. Inspired by this, we use an
object-oriented representation for RL to learn sim-
ple dynamics model and do planning with strate-
gic exploration. In contrast to the tabular settings
which is the focus of most theoretical analysis
of efficient exploration, it is not tractable to per-
form exact planning. We investigate how various
model-based strategic exploration strategies work
when combined with the popular Monte Carlo
Tree Search approximate planning technique, and
find preliminary evidence that optimism-based
strategies can be particularly beneficial. We use
the resulting technique on perhaps the hardest
Atari game Pitfall! and our preliminary results
suggest substantially improved exploration and
performance over prior methods.

1. Introduction

The coupling of deep neural networks and reinforcement
learning has led to exciting advances, enabling reinforce-
ment learning agents that can reach human-level perfor-
mance in many Atari2600 games (Mnih et al., 2015). How-
ever, such agents typically require hundreds of millions of
time steps to learn to play well. As recently noted (Lake
etal., 2017), this is in sharp contrast to people, who typically
learn to play Atari games within a few episodes. Prior work
on human learning for Atari highlights people’s ability to
generalize from few examples, explore and plan efficiently
(Tsividis et al., 2017). People also seem to benefit sub-
stantially from using a higher-level object representation.
Humans can strategically explore object dynamics models,
and use to compute high expected reward plans.
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An important question is whether we can define algorithms
that can similarly leverage such strategies to enable vastly
more efficient reinforcement learning. We hypothesize that
the intersection of three features may be sufficient to en-
able such success: (a) leveraging abstract object-level rep-
resentations, (b) learning (often inaccurate) models of the
world dynamics that can be learned quickly and support fast
planning, and (c) strategic model-based exploration using
lookahead planning.

Strategic exploration methods have been studied in great
detail in the tabular setting with recent results yielding near-
tight probably approximately correct (Dann et al., 2017)
and tight regret bounds (Azar et al., 2017). Extensions of
tabular optimistic bonuses (e.g. (Strehl & Littman, 2008)) to
deep model-free RL methods (Bellemare et al., 2016) show
substantially improved performance in many environments
over e-greedy exploration. However, these methods still
require millions of frames and struggle in domains that
involve sparse delayed reward.

A challenge with many of these methods is propagating
the optimistic reward bonuses to encourage exploration, a
challenge that should be addressed by performing looka-
head planning using model-based RL, such as UCT algo-
rithm (Kocsis & Szepesvari, 2006). Unfortunately, due to
the difficulty in learning accurate models in complicated
domains, model-based RL has not matched the impressive
performance observed by its model-free counterparts.

While prior attempts have tried using object-level represen-
tations to provide key inductive bias to accelerate learning,
they do not couple their efforts with strategic exploration
(Garnelo et al., 2016; Roderick et al., 2017; Cobo et al.,
2013). Our work is inspired by an important exception to
this, the DOORMAX algorithm (Diuk et al., 2008), which
performs strategic R-max (Brafman & Tennenholtz, 2002)
like exploration to learn logic-like dynamics models. This
work assumes that planning can be done exactly. How-
ever, even when using object-level representations, in long
horizon, sparse reward domains it will still typically be
intractable to perform perfect lookahead planning.

In this paper we also use an object-oriented representation
for RL (Diuk et al., 2008) and make three key contributions.

1. Given it will generally be impossible to perform exact
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lookahead planning, we investigate which model-based
strategic exploration strategies perform best when com-
bined with the popular approximate Upper Confidence
Tree planning algorithm (Kocsis & Szepesvari, 2000).
Our results highlight that optimistic strategies can be
substantially better than Thompson Sampling when
using MCTS as the planner.

2. Leveraging these results, we introduce a new object-
oriented, model-based, optimistic strategic RL algo-
rithm. Our algorithm takes in simple action macros
(of the form ““act and then wait” identical to those de-
fined in prior work (Diuk et al., 2008)) that may mimic
human performance due to reaction time. It also lever-
ages an inductive prior that there should exist simple
deterministic models of the world dynamics.

3. We evaluate our approach on Pitfall!, perhaps the hard-
est Atari2600 game with extremely sparse positive
reward. To our knowledge, our approach is the first
method to achieve positive reward on this game without
human demonstrations.

2. Object Representation

Consider a finite horizon Markov Decision Process (MDP)
(S, A, T, R,v), where S is the state space, A the action
space, T' : § x A — S the transition function, R : S x A —
R the reward function, and ~ the discount factor. The goal
of the RL agent is to maximize the expected discounted
reward E [ZtT:O v R(s¢, a)] following a policy 7. Addi-
tionally, inspired by human visual perception, we assume
the existence of an object extractor function f : S — O that
extracts the objects in state s.!

Similar to OOMDP, we define a set of object classes
C = {c1,...,cn} where each class has a set of attributes
{c.ay,...,c.ay}. Each state s consists of objects f(s) =
{o1,...,0r} where each object o; € C. The state of an
object is defined by the value assignment to its attributes.
Finally, the state s of the underlying MDP is the union of
all object states U¥_, o,.

We define the interaction function 7 : O x O — {0,1} to
be an indicator that determines if two objects are interacting
with each other. For simplicity, we make three assumptions:
first, the interaction function is known; second, objects
from the same class share the same transition, reward and
interaction function; and third, each object’s next state is
dependent on at most pairwise object interactions and action.
An object’s successor state is determined by a standalone
transition function T, (o, a) or a pairwise transition function
Te; ., (0i,05,a)if I(0;,0;) = 1.

i,Cj

"Function f can be any computer vision object detection algo-
rithm.

3. Exploration with Imperfect Planning

Planning in a MDP with known dynamics can be efficiently
done by focusing on promising branches of state-action
tree using the UCT algorithm. However, learning a model
sufficient for planning can be hard, if not impossible, for a
MDP with large state space. Object representation allows
us to learn a simple predictive model of the dynamics for
each object class, and also allows us to perform strategic
exploration (e.g. posterior sampling and optimism in the
face of uncertainty).

At each state s, we select the appropriate distribution over
models for the corresponding object representation f(s)
and use UCT to pick the best action. This approach natu-
rally lends itself to three different methods of exploration:
Thompson Sampling (Thompson, 1933), by sampling a
model at the beginning of planning; BAMCP (Guez et al.,
2012), by sampling a model for each simulation; and opti-
mism based exploration by planning multiple times each
with a new sampled model and acting greedily according to
the best Q value for each action across different models. We
compared these methods to Baseline, which uses a MLE
model with UCT algorithm and no exploration. Note that in
all algorithms use the same input representation of the state
space, which is an object level representation.

We now compare these approaches in a challenging explo-
ration setting in order to better understand the effect of
strategic exploration with approximate model-based plan-
ning. To do so, we introduce Pong Prime, a variant of the
game Pong. The dynamics of this game is similar to Pong,
with minor tweaks that make the game significantly harder.
The enemy paddle is made 3 times larger than the player
paddle, so it is impossible to score points by simply hitting
the ball. Additionally, enemy and player paddles are split
into two and three regions respectively, each with distinct
behavior. Hitting the ball with different regions result in
different speed changes to the ball. Figure 1(a) shows the
speed multipliers for the regions.

In this setting, the optimal policy is to always hit the ball
with the lower region, since the player instantly wins a point
by doing so. The game is deterministic and model free
methods with e-greedy exploration (e.g. DDQN) consis-
tently lose the game with lowest possible score across 1000
episodes using either pixel or objects’ location as an input.

The correct model class for dynamics of each paddle is a lin-
ear model with 3 action history. We assume that the learned
dynamics model uses this true model class (i.e. performs
linear regression on the transitions we observe). Figure 1(b)
compares the performance of different exploration strategies
to the baseline, which performs UCT with the maximum
likelihood model parameters for the linear model with the
3 step action history. We perform 500 total tree searches
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Figure 1. (a) Pong Prime environment (b) Comparison of different exploration methods (c) Effect of planning power on optimism-based

exploration

for all runs in Figure 1(b) (i.e. Thompson Sampling (TS)
uses 500 simulations and 1 model, BAMCP 1 simulation
and 500 models, optimism 100 simulations and 5 models).

Both BAMCP and TS perform worse than the MLE model.
We hypothesize that this result is due to approximate plan-
ning, as in the limit of infinite simulations, BAMCP is guar-
anteed to converge to the Bayes optimal solution (Guez et al.,
2012). Similarly, with full horizon planning, we should be
able to compute the exact value for the model sampled with
TS, and there are strong guarantees that such a method will
converge to the optimal policy.

However in practice, especially in large domains or domains
with real-time constraints, the amount of computation, and
therefore the quality of the computed plan, will be signifi-
cantly limited. In particular, if it is infeasible to use a depth
that mimics the game horizon, or perhaps even to reach a lo-
cal reward, then TS may suffer. This is because TS samples
a single model, which means that parts of the model may
be overly optimistic, while other parts may be pessimistic.
Hence, when performing a limited number of simulations
using MCTS, we may not go down branches of the tree
that “observe” the optimistic parts of the sampled model.
Therefore, the computed estimates of the Q value at the root
node may not be optimistic, which is often a key part of
proofs of the effectiveness of TS methods, and very helpful
empirically.

BAMCEP faces similar challenges, but suffers further in
this domain because the true domain is deterministic. This
means that for TS, optimism, and MLE approaches, the tree
constructed will only have one child node (the deterministic
next state) for any chosen action. In contrast, BAMCP sam-
ples a different deterministic model at each simulation, and
for the same action node, those models may each determin-
istically predict different next states. Hence, BAMCP with
M sampled models and planning horizion H, potentially
builds a tree of size O((|A|M)*), in contrast to the other

methods that build a tree of at most size O(| A|).

Optimism-based exploration significantly outperforms other
approaches. We suspect it is more robust to approximate
planning, since optimism is built into every node, allow-
ing it to distinguish even locally between actions that may
need exploration, in the absence of observing long delayed
reward.

Indeed as we demonstrate in Figure 1(c) for the optimistic
method, as planning power increases through more simula-
tions, the performance of optimism-based exploration also
increases. We expect that with sufficient computations the
optimstic method should eventually learn the optimal policy
for this domain.

4. Strategic Model Based RL

Another main challenge of performing efficient model based
planning is learning accurate state and reward models. In or-
der to learn simple yet sufficient models for planning, we use
object representations to learn dynamics for each object sep-
arately (as discussed in Section 2). We also use the notion
of meta-actions ("act and then wait") to simplify the model
learning process. Based on the results of Section 3, we cou-
pled Model-based RL with optimism based exploration, and
evaluated our algorithm on Pitfall!, an environment with
extremely sparse positive reward where efficient exploration
is necessary.

Table 1 compares our method to other state-of-the-art algo-
rithms. Our average score across all episodes and all runs
is -281.07, which is roughly on par with count-based explo-
ration (Bellemare et al., 2016). Our average score for the
best episode across all runs in 80.52, which is higher than
all scores that were reported at the time of evaluation.

Figure 2 shows an increasing number of rooms being dis-
covered across episodes. On average, the agent discovers 17
rooms within 50 episodes. The best out of 100 runs discov-
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Method |

Ours' | Ours’™ | DQfD' | Count Based’ | A3CT | DQN'

Performance ‘ -281.07 4+ 395.56 ‘

80.52 |

508 | -259.09 | -6.98 | -86.85

Table 1. Comparison of our method to state-of-the-art algorithm, T is evaluation time performance, ¥ is training time performance and **
is the average of the best episode for each run (for our algorithm). We expect T* and T to be the best performance of each algorithm,
averaged across runs. We run DQN using both objects’ location and pixels as an input and reported the best result. We read the reported

results for DQfD, Count based and A3C.
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Figure 2. Number of Discovered Rooms

ers 25 rooms within 50 episodes. Figure 4 shows all the 26
rooms that were discovered across all 100 runs. On the other
hand, Figure 4(b) shows DDQN with e-greedy exploration
visits at most 6 rooms with either pixels or objects’ location
as an input.

Moreover, Figure 3 shows that our method manages to get
6 positive rewards, 3 of which are situated in room 6 and
another 3 which are situated in room -17. To the best of our
knowledge, this is the first approach which manages to get
positive rewards on Pitfall! without human demonstrations.
Furthermore, from video demonstrations shown by DQfD
(Hester et al., 2017), the agent seems to only get the reward
in room 6 and not the reward in room -17. In comparison,
our approach explores both the left and right side of the
map, and gets the rewards on both sides of the map equally
often.’

5. Conclusion and Future Work

An immediate obvious improvement would be to incorpo-
rate an estimate of the leaf node value during tree search.
This addition was critical to the success and computational
efficiency of earlier MCTS methods, such as on the game
Go (Silver et al., 2016). Incorporating an estimate of the
future value at the leaves will allow the agent to avoid pro-

2 Sample videos of the agent reaching the two closest positive
rewards can be found here:
https://youtu.be/GvenPzZMJiTg (4000 reward)
https://youtu.be/74F-ta5LyuA (2000 reward)
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Figure 4. (a) Rooms Discovered via Strategic Exploration (b)
Rooms Discovered via DDQN with e-greedy

hibitive lookahead planning.

To conclude, we presented an object-oriented framework
that allows the RL agent to quickly learn to explore in an
environment with large state space and sparse reward. Our
work combines object oriented representation and optimism-
based strategic exploration. We demonstrate that optimistic
planning may be particularly beneficial when planning is
necessarily approximate. We also demonstrate the first, to
our knowledge, approach that can obtain positive reward on
Pitfall without human demonstrations.
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