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ABSTRACT

Signal processing, communications, and control have tradi-
tionally relied on classical statistical modeling techniques.
Such model-based methods tend to be sensitive to inaccura-
cies and may lead to poor performance when real systems dis-
play complex or dynamic behavior. On the other hand, purely
data-driven approaches are becoming increasingly popular.
Deep neural networks (DNNs) employ a highly flexible func-
tion class to learn mappings from data, and demonstrate ex-
cellent performance. However, DNNs typically require mas-
sive amounts of data and immense computational resources,
limiting their applicability for some signal processing sce-
narios. We consider hybrid techniques that combine princi-
pled mathematical models with data-driven systems to benefit
from the advantages of both approaches. Such model-based
deep learning methods exploit both partial domain knowl-
edge, via mathematical structures designed for specific prob-
lems, as well as learning from limited data. Here, we survey
leading approaches for studying and designing model-based
deep learning systems, along with concrete design guidelines
and signal processing oriented examples.

Index Terms— Model-based deep learning

1. INTRODUCTION

Traditional signal processing is dominated by algorithms that
are based on mathematical models which are hand-designed
from domain knowledge. Such knowledge typically comes
from postulated statistical models. These domain-knowledge-
based processing algorithms, referred to henceforth as model-
based methods, infer based on knowledge of the underlying
model relating the observations and the desired information.
Model-based methods do not rely on data to learn their map-
ping, though data is often used to estimate a small number
of parameters. Fundamental techniques like the Kalman filter
and message passing algorithms are model-based methods.
Classical models rely on simplifying assumptions that make
them tractable, understandable and computationally efficient.
However, simple models frequently fail to represent nuances
of high-dimensional complex data and dynamic variations.

The incredible success of deep learning has initiated a
general data-driven mindset. It is currently fashionable to
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Fig. 1: Model-based deep learning strategies.
replace simple principled models with purely data-driven
pipelines, such as Deep neural networks (DNNs), trained with
massive labeled datasets. The benefits of data-driven methods
over model-based approaches are twofold: First, purely-data-
driven methods do not rely on analytical approximations and
thus can operate when the model is not known. Second, for
complex systems, data-driven methods are able to extract se-
mantic information from observed data [1]. This is difficult to
achieve analytically, even when the model is known perfectly.

The fact that massive data sets are typically required to
train DNNs to learn a desirable mapping, and the computa-
tional burden of training and utilizing these networks, may
constitute a major drawback in various signal processing ori-
ented applications. This severely limits their applicability
on hardware-limited and portable devices [2]. Furthermore,
DNNs are commonly utilized as black-boxes; understanding
how their predictions are obtained tends to be challenging,
and they do not yet offer the interpretability, flexibility, versa-
tility, and reliability of model-based methods [3].

The limitations associated with model-based methods and
black-box data-driven systems gave rise to a multitude of
techniques aiming to benefit from both approaches. In this
work we overview the leading strategies for combining do-
main knowledge and data via model-based deep learning. To
that aim, we present a unified framework for studying and
designing hybrid model-based/data-driven systems, while be-
ing geared towards signal processing oriented problems. The
proposed framework builds upon the insight that such systems
can be divided based on the component which eventually in-
fers: The first category are DNNs whose architecture is spe-
cialized to the specific problem using model-based methods,
referred to here as model-aided networks. The second one are
techniques in which inference is carried out by a model-based
algorithm whose operation is empowered by deep learning,
which we refer to as DNN-aided inference. Based on this
division, we provide concrete guidelines for studying model-
based deep learning systems. An illustration of this division
of model-based deep learning schemes is depicted in Fig. 1.

The rest of this article is organized as follows: Sec-



Fig. 2: Illustration of model-based versus data-driven inference. Red arrows represent computations performed before the inference stage.

tion 2 discusses the concepts of model-based and data-driven
schemes. The hybrid strategies of model-aided networks and
DNN-aided inference are detailed in Sections 3-4, respec-
tively. Finally, we provide concluding remarks in Section 5.

2. MODEL-BASED VERSUS DATA-DRIVEN

We focus on systems that perform inference based on a set of
observed variables. Here, an input variable x ∈ X is mapped
to a prediction of a label variable s ∈ S, denoted ŝ, where X
and S are referred to as the input space and the label space,
respectively. An inference rule can be expressed as f : X 7→
S, where the fidelity is measured using a loss function L(f).
Both model-based methods and data-driven schemes aim to
design the inference rule f(·) to minimize L(f).

2.1. Model-Based Methods
Model-based algorithms set their inference rule, i.e. tune f ,
to minimize L(·) based on domain knowledge, namely, prior
knowledge of the underlying statistics relating the input x
and the label s, such as the generative conditional distribution
px|s. Model-based algorithms can often provably implement
or approach the loss minimizing inference rule at controllable
complexity, typically using iterative methods comprised of
multiple stages, where each stage involves generic mathemat-
ical manipulations and model-specific computations.

Model-based methods do not rely on data, as illustrated in
the right part of Fig. 2, though data is often used to estimate
unknown model parameters. In practice, accurate knowledge
of the underlying statistical model is typically unavailable,
and it is commonly required to impose assumptions on the
underlying statistics. Under inaccurate model knowledge, ei-
ther as a result of estimation errors or due to enforcing a
model which does not fully capture the environment, the per-
formance of model-based techniques tends to degrade.

2.2. Data-Driven Schemes
Data-driven systems learn their mapping from data. In a su-
pervised setting, data is comprised of a training set consist-
ing of nt input-label pairs {xt, st}nt

t=1. A leading data-driven
strategy, used in deep learning, assumes a highly-expressive
generic parametric model for f(·) which is dictated by a set
of parameters denoted θ, and is written as fθ. Deep learning
typically implements fθ using a DNN, where θ represents the
network weights. By properly tuning θ using the training set,
one aims to obtain the desirable inference rule.

Purely-data-driven methods are model-agnostic, as illus-
trated in the left part of Fig. 2. The inference rule can be ap-
plied to a broad range of different problems, while the charac-
teristics of the problem are encapsulated in the weights. Yet,
one can incorporate some level of domain knowledge in the
selection of the architecture. or by pre-processing of x.

The generic nature of data-driven strategies induces some
drawbacks, as learning a large number of parameters requires
a massive data set to train on. Even when a sufficiently
large data set is available, the training procedure is typi-
cally lengthy and involves high computational burden. Fi-
nally, their black-box nature implies that data-driven systems
in general lack interpretability, making it difficult to provide
performance guarantees and insights into its operation.

2.3. Model-Based Deep Learning
Model-based deep learning schemes incorporate domain
knowledge in the form of an established model-based algo-
rithm suitable for the problem at hand, combined with capa-
bilities to learn from data via deep learning. Such systems
tune their mapping of the input x based on both data, e.g.,
a labeled training set {st,xt}nt

t=1, as well as some domain
knowledge, such as partial knowledge of px|s. Such hybrid
systems can typically learn their mappings from less data
compared to purely model-agnostic DNNs, and commonly
operate without full knowledge of the underlying model.

Hybrid model-based/data-driven design schemes can be
divided into two main strategies, as illustrated in Fig. 2. The
first of the two, which we refer to as model-aided networks,
utilizes model-based methods as a form of domain knowl-
edge in designing a DNN architecture, while using the re-
sultant network for inference. The second strategy, which we
call DNN-aided inference systems, uses conventional model-
based methods for inference, while incorporating learning to
make the resultant system more robust and model-agnostic.

3. MODEL-AIDED NETWORKS

Model-aided networks use custom DNN architectures that in-
corporate structures exhibited by model-based methods for
the problem at hand, while using the resultant network for in-
ference. Unlike conventional model-agnostic deep learning,
model-aided networks utilize a unique architecture designed
for a particular task by imitating the model-based algorithm
with full model knowledge. We next describe two representa-
tive examples: deep unfolding and neural building blocks.



3.1. Deep Unfolding
Deep unfolding, also known as deep unrolling [3, 4], is a
method for converting an iterative algorithm into a DNN by
designing each layer to resemble a single iteration. Deep un-
folding has been applied in image denoising [3, 5], sparse re-
covery [4,6], dictionary learning [7], communications [8–10],
ultrasound [11, 12], and super resolution [13].

Design Outline:
1. Identify a suitable iterative optimization algorithm.
2. Fix a number of iterations in the optimization algorithm.
3. Design the layers to imitate the free parameters of each
iteration in a trainable fashion.
4. Train the overall resulting network end-to-end.

Deep Unfolded Robust PCA (Example): Robust
principal component analysis (PCA) refers to the problem of
recovering a sparse matrix S where the measurements X are
corrupted by low-rank clutter L as well as noise W . In par-
ticular, the measurements are related to the sparse matrix via

X = H1L+H2S +W . (1)
Here, H1 and H2 are measurement matrices of appropriate
dimensions;L is a low-rank clutter matrix; andW is an addi-
tive noise signal. The domain knowledge that S is sparse and
that L is low rank implies that their recovery can be obtained
by solving the following relaxed optimization problem:

min
S,L
‖X −H1L+H2S‖2F + λ1‖L‖∗ + λ2‖S‖1,2, (2)

where ‖·‖F , ‖·‖∗, and ‖·‖1,2 are the Frobenious, nuclear, and
mixed `1,2 norms, while λ1 and λ2 are coefficients promoting
low rankness of L and sparsity of S, respectively. The robust
PCA objective formulation in (2) can be solved by the gener-
alization of iterative soft thresholding algorithm (ISTA) to the
matrix domain, which we unfold into a DNN following [5].

To formulate the deep unfolded robust PCA system, we
first fix a number of iterations Q, and design a DNN with Q
layers, each imitating a single ISTA iteration. Letting L̂q and
Ŝq be the estimates ofL and S produced at the output the qth
layer, the operation of the unfolded iteration can be written as

L̂q+1 = SVT
λ
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where Tλ and SVTλ are the soft thresholding operator and
the singular value thresholding operator, respectively. The
affine mappings are convolutional layers with kernels {P (q)

i }.
This DNN is depicted in Fig. 3. To tune its trainable parame-
ters, the network is trained in an end-to-end manner to mini-
mize the Frobenius norm loss. As bothL andS are estimated,
the training accounts for the errors in both estimates.

Discussion: Deep unfolding uses domain knowledge to
obtain a dedicated DNN design which resembles an iterative
algorithm. Compared to conventional DNNs, unfolded net-
works are typically interpretable, tend to have fewer parame-
ters, and can be trained more quickly [3, 8]. When the model

Fig. 3: Deep unfolded robust PCA illustration.
is accurately known, deep unfolding essentially incorporates
it into the DNN. However, this may lead to degraded perfor-
mance when the true model deviates from the one assumed in
design, e.g., (1). Nonetheless, training an unfolded network
designed with a mismatched model using data from the true
setup can yield accurate inference as the unfolded network
learns to compensate for this mismatch from data. Another
advantage of deep unfolding over model-based optimization
is in inference speed. For instance, unfolding the ISTA itera-
tions into a DNN allows to infer with fewer layers compared
to the number of iterations ISTA requires to converge.

3.2. Neural Building Blocks
Neural building blocks implement a DNN comprised of mul-
tiple sub-networks by representing a model-based algorithm
suitable for the problem as an interconnection of building
blocks. Each module carries out the computations of the
different building blocks constituting the model-based algo-
rithm [14], or to capture a known statistical relationship [15].

Design Outline:
1. Identify an algorithm or a flow-chart structure which is use-
ful for the problem, and decompose it into building blocks.
2. Identify which of these building blocks should be learned
from data, and what is their concrete task.
3. Design a dedicated neural network for each building block
capable of learning to carry out its specific task.
4. Train the overall resulting network, either end-to-end or by
training each building block network individually.

DeepSIC for MIMO Detection (Example): DeepSIC
proposed in [14] is a hybrid model-based/data-driven imple-
mentation of the iterative soft interference cancellation (SIC)
method [16]. The iterative SIC is a symbol detector for linear
multiple-input multiple-output (MIMO) Gaussian channels:

x = Hs+w. (4)

Here, x is theN×1 observations,H is a known deterministic
channel matrix,w is Gaussian noise, and s is comprised ofK
entries {sk} generated i.i.d. uniformly from S = {±1}. SIC
operates in an iterative fashion where, in each iteration, an
estimate of the conditional probability mass function (PMF)
of sk given x is generated for every k using the estimates
of the interfering symbols {sl}l 6=k obtained in the previous
iteration. This iterative procedure is illustrated in Fig. 4(a).

DeepSIC learns to implement the iterative SIC from data
as a set of neural building blocks, each implementing the two
stages of interference cancellation and soft decoding. In par-
ticular, the kth building block of the qth iteration produces



Fig. 4: Iterative SIC: a) model-based method; b) DeepSIC.

p̂
(q)
k , which is an estimate of the conditional PMF of sk given
x based on {p̂(q−1)l }l 6=k. Such computations are naturally
implemented by classification DNNs with a softmax output
layer. Embedding these conditional PMF computations into
the iterative SIC block diagram in Fig. 4(a) yields the overall
receiver architecture depicted in Fig. 4(b). Using classifi-
cation DNNs as the basic building blocks allows to compute
conditional PMFs in complex non-linear setups. DeepSIC can
thus implement SIC for arbitrary channel models. The DNNs
can either be trained individually, where the qth iteration out-
puts are used as training inputs for the DNNs of the q + 1th
iteration. Alternatively, DeepSIC can be trained end-to-end.

Discussion: The main rationale in designing DNNs as in-
terconnected neural building blocks is to facilitate learned in-
ference by preserving the structured operation of a suitable
model-based algorithm. Treating the algorithm as a set of
building blocks with concrete tasks allows a DNN architec-
ture designed to comply with this structure not only to learn to
carry out the original model-based method from data, but also
to make it more robust. In addition, the division into building
blocks gives rise to the possibility to train each block sepa-
rately. The main advantage in doing so is that training will
likely be faster, though end-to-end training is likely to yield
improved accuracy given sufficiently large training data.

4. DNN-AIDED INFERENCE

DNN-aided inference is a family of model-based deep learn-
ing algorithms in which DNNs are incorporated into model-
based methods. Unlike model-aided networks, here infer-
ence is carried out using a traditional model-based method,
while some of the intermediate computations are empowered
by DNNs. We next describe both structure-agnostic and the
structure-oriented approaches for DNN-aided inference.

4.1. Structure-Agnostic DNN-Aided Inference
The first family of DNN-aided inference utilizes deep learn-
ing to implicitly learn structures and statistical properties of
the signal of interest, in a manner amenable to model-based
optimization. Tackling such problems typically involves im-
posing a structure on the target signal. Deep learning al-
lows to avoid such explicit constraints, thereby mitigating the

Fig. 5: High-level overview of CS with a DNN-based prior.
detrimental effects of crude approximation of the true struc-
ture. This can be achieved by using deep denoisers as learned
proximal mappings, as in DNN-based plug-and-play meth-
ods [17–19]. DNN-based priors can also enable compressed
sensing (CS) beyond the domain of sparse signals [20–23].

Design Outline:
1.Identify the optimization procedure for the problem at hand,
given domain knowledge of the signal of interest.
2. The optimization parts which rely on complicated domain
knowledge are replaced with a DNN.
3. The integrated data-driven module can either be trained
separately from the inference system, possibly in an unsuper-
vised manner as in [21], or end-to-end [24].

CS using Generative Models (Example): CS refers to
the task of recovering some unknown signal from (possibly
noisy) lower-dimensional observations. Here, we wish to re-
construct an unknown N -dimensional sparse signal s∗ from:

x = As∗ +w, (5)
where A is an M × N random Gaussian matrix with entries
Aij ∼ N (0, 1/M), with M < N , and w is a noise vector.
Our goal is to find the sparsest s that agrees with the noisy
observations, which can be recovered by minimizing

LLASSO(s) , ‖As− x‖22 + λ‖s‖1 (6)

For l = ‖s∗‖0 and M = Θ(l log N
l ), the unique minimizer

of the convex (6) equals s∗ with high probability.
The method proposed in [21] uses a deep generative prior

to replace the sparsity assumption on true signal s∗, with a
requirement that it lies in the range of a pre-trained generator
network G : Rl → RN . To that aim, one first has to train a
generative network G to map a latent vector z from an i.i.d.
Gaussian distribution into a signal s in the domain of interest.
Once a pre-trained G is available, it is used as an alternative
prior for the inverse model in (5), as the range of G should
only contain plausible signals. This is achieved by optimizing
in the latent space to find z whose image G(z) matches the
observations, i.e., by minimizing the following loss function:

LCS(z) = ‖AG(z)− x‖22 + λ‖z‖22. (7)
While (7) involves a highly non-convex function G, it is
differentiable with respect to z, so it can be tackled using



gradient-based optimization techniques. Once a suitable la-
tent variable z is found, the actual signal we return is G(z).
An illustration of the system operation is depicted in Fig. 5.

Discussion: Using deep learning to empower regularized
optimization builds upon the model-agnostic nature of DNNs
to by pass the need for explicit regularization. The fact that
structure-agnostic DNN-aided inference utilizes deep learn-
ing to capture the domain of interest facilitates using pre-
trained networks. This property reduces the dependency of
the system on massive amounts of labeled data, as e.g., deep
generative priors are trained in an unsupervised manner, and
thus relies mostly on unlabeled data, which are typically more
accessible and easy to aggregate compared to labeled data.
One can often utilize off-the-shelf pre-trained DNNs when
such exist for domains related to that of interest, with possi-
ble adjustments to account for the subtleties of the problem.

4.2. Structure-Oriented DNN-Aided Inference
Structure-oriented DNN-aided inference algorithms utilize
model-based methods designed to exploit an underlying sta-
tistical structure, while integrating DNNs to enable opera-
tion without additional explicit model characterization. These
structures can be an a-priori known factorizable distribution,
such as finite memory in communication channels [25–27]; as
well as from established approximations, such as modelling
of images as conditional random fields [28].

Design Outline:
1. A proper inference algorithm is chosen based on the avail-
able knowledge of the underlying statistical structure.
2. Once an algorithm is selected, we identify its model-
specific parts, and replace them with compact DNNs.
3. The resulting DNNs are either trained individually, or the
overall system can be trained in an end-to-end manner.

Learned Factor Graphs (Example): The sum-product
(SP) algorithm efficiently computes marginals from factoriz-
able distributions [29]. Consider the recovery of a series {si}
taking values in S from an observed sequence {xi} taking
values in X . The distribution of {si} and {xi} obeys an lth-
order Markovian stationary model, l ≥ 1, such that the dis-
tribution of x = [x1, . . . , xt]

T and s = [s1, . . . , st]
T satisfies

p(x, s)=

t∏
i=1

p
(
xi|sii−l

)
p
(
si|si−1i−l

)
, (8)

where we write sji , [si, si+1, . . . , sj ]
T for i < j. When (8)

is known the SP algorithm efficiently computes the maximum
a-posteriori probability (MAP) detector [29]. This is achieved
by defining the vector variable si , sii−l+1 ∈ Sl, and the
function f (xi, si, si−1) , p (xi|si, si−1) p (si|si−1), The
distribution (8) is then represented as a factor graph with t
function nodes {f (xi, si, si−1)}. Finally, the joint distribu-
tion of each si and x is computed by recursive message pass-
ing along its factor graph as illustrated in Fig. 6(a).

Learned factor graphs [26] utilize the known factoriza-
tion to determine the factor graph structure, while using deep

Fig. 6: Illustration of the SP method for Markovian sequences using
a) the true factor graph; and b) a learned factor graph.
learning to compute the function nodes. In particular, the sta-
tionarity assumption implies that the complete factor graph is
encapsulated in the single function f(·) for any t. A DNN is
thus utilized to learn the mapping carried out at the function
node separately from the inference task. The SP method is the
applied over the resulting learned factor graph, as illustrated
in Fig. 6(b). As learning a single function node is often sim-
pler than recovering s fromx, one may use relatively compact
DNNs, which can be learned with small data sets.

In order to learn a stationary factor graph from samples,
one must only learn its function node, which here boils down
to learning p(xi|sii−l) and p(si|si−1i−l ), where p(si|si−1i−l ) can
be learned via a histogram. For learning p(xi|sii−l), a para-
metric estimate of p (si|xi), denoted P̂θ(si|xi), is obtained
for each si ∈ Sl+1 by training a classification DNN. As SP
is invariant to scaling f(xi, si, si−1), one can use P̂θ(si|xi)
as the function node without affecting the inference mapping.

Discussion: Structure-oriented DNN-aided inference is
most suitable for setups in which structured domain knowl-
edge naturally follows from the underlying physics or from
established models of the problem. Such structural knowl-
edge is often present in various problems in signal processing
and communications, implies that this approach can facilitate
inference in such scenarios in a manner which is ignorant of
the unique and possibly intractable subtleties of the problem.
Furthermore, such systems can be often trained using scarce
data sets, facilitating adaptation to temporal model variations.

5. CONCLUSION

We presented a mapping of methods for combining domain
knowledge and data-driven inference. We divided such sys-
tems into model-aided networks, which utilize model-based
algorithms to design DNNs, and DNN-aided inference, where
deep learning is integrated into model-based methods. In our
review, we detailed design approaches and examples for each
strategy, in order to facilitate extensions and applications.
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