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Abstract

The availability of large amounts of quality labeled data
is a fundamental challenge of modern supervised learning.
In this work, we explore the use of generative models on un-
labeled data to improved the performance of a supervised
classifier trained on few labeled examples. We consider
two families of generative models: PixelRNN and DCGAN.
We successfully apply these models to achieve significantly
higher performance in supervised image recognition while
using small amounts of labeled training examples.

1. Introduction
It is well known that training deep neural networks re-

quires an abundance of data, and its most notable successes
have been in areas where this condition is met. One cat-
egory of major success is supervised learning where large
labeled datasets exist, such as ImageNet [1]. Another cat-
egory of success includes unsupervised tasks where la-
bels are not necessary. Image generation is an example
of such task. To this end autoregressive generative mod-
els such as PixelRNN [2] and Generative Adversarial Net-
works (GANs) [3] have become an active area of research.
We used the MNIST [4] dataset as the benchmark for our
experiments. So given a picture of a handwritten digit, one
should classify it into one of ten different classes (i.e. dig-
its 0 through 9). We also initiated work on the CIFAR-10
dataset [5], but only got as far as training a PixelRNN on it.
The challenges we faced are explained later in section 6.2.
For CIFAR-10, given a picture, one should classify it into
one of 10 possible classes (e.g. airplane, bird, horse).

In practice, however, arguably the most common setting
is where large amounts of unlabeled data exists, but we wish
to train some supervised predictor. In many cases, it is
prohibitively expensive to label all the data, so the labeled
dataset is often many orders of magnitude smaller.

There are two main approaches that are commonly used
in dealing with the challenge of having a small labeled
dataset: transfer learning and semi-supervised learning. In
this work, we investigate both: semi-supervised techniques

for transferring learned representations and jointly training
supervised and unsupervised models concurrently.

1.1. Transfer Learning

Transfer learning tries to gain performance from a larger
labeled dataset for a different, but related task. It has
been empirically observed that given enough data, features
learned by deep learning models can generalize to another
problem and thus can be used in, for example, a new classi-
fication task. Especially in computer vision, it has become a
very common practice to reuse layers from large pre-trained
networks such as Inception[6] or VGG [7].

1.2. Semi-Supervised Learning

Semi-supervised learning tries to take advantage of un-
labeled data, ideally from the same distribution as the la-
beled data. One common class of techniques is based on
label propagation, which attempts to “smear” labels from
the labeled dataset to the unlabeled one based on some sim-
ilarity heuristic [8]. Another class of techniques attempts
to use the unlabeled data directly in the training objective,
for example to first train an autoregressive model to initial-
ize good weights, learn useful compressed representations
of the data, or to train for some joint objective. It is this
second class that we focus on in this paper, and we describe
relevant prior works in section 2.

1.3. Learning From Unlabeled Data

We conjecture that like features in supervised models,
features learned by generative models that are able to gener-
ate images from some distribution P (X) must also be trans-
ferable to a supervised task on P (Y |X) where X is a data
point and Y is some output variable that we want to map
X to. Intuitively, those features should be more represen-
tative than transferring from another supervised task, since
the data comes from the same distribution.

We investigate two different classes of models for this
purpose. The first is PixelRNN [2], an autoregressive model
of the distribution over image pixels. The second is a semi-
supervised Deep Convolutional GAN (DCGAN) [9], which
frames the objective as a game between two neural networks
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while concurrently optimizing for the supervised objective.

1.4. Problem Formulation

Formally speaking, let D = {X,Y,X ′} be a dataset
where (X,Y ) are the labeled points, andX ′ is the rest of the
unlabeled data, which is often orders of magnitude larger
than X .

Our PixelRNN experiments involve first training a gen-
erative model U({X,X ′}) and then transferring its features
to a subsequent supervised task S(X,Y ;U). To our knowl-
edge leveraging PixelRNNs for this type of semi-supervised
learning has not been attempted yet.

On the other hand, our semi-supervised DCGAN experi-
ment involves a generative model being trained along with a
discriminator using all of {X,Y,X ′} at the same time. The
discriminator is used to compute both the adversarial loss
and the classification loss. This approach was based on the
work of Salimans et al. [10].

Finally the baseline model is trained only on the avail-
able labeled data S′(X,Y ).

The models are evaluated in their accuracy and the
amount of labeled data required to converge to good results.

2. Related Work
There have been numerous studies that examine the use

of generative models in a semi-supervised setting.
Salimans, et al. [10] report a way to utilize GANs for a

classification task with K classes. Specifically, they pro-
pose an extension to the vanilla GAN where the labeled
dataset is augmented with samples from the generator. The
discriminator is also modified to predict K + 1 classes: the
originalK classes and a new class for fake (generated) data.
In a sense this helps the discriminative model by augment-
ing a smaller labeled dataset with larger unlabeled set of real
examples and generated samples. In [10], a fully connected
generator network was used as noted from their published
implementation [11]. In the present work we replace it with
a DCGAN and obtain a superior performance.

Donahue et al. [12] describe an adversarial formula-
tion with a third component, which they call the “encoder”.
While the generator maps a simple latent distribution to data
space, the encoder attempts to encode real data to some la-
tent space. They show that this encoder is capable of learn-
ing to invert the generator, and can be used as a featurizer
for a supervised training.

On the autoregressive side, Dai and Le [13] explored the
idea of first “pretraining” a sequence model to perform a
task on unlabeled text data. These pretrained weights are
then used to train supervised models for text classification.
Their results show improved learning stability and model
generalization.

Radford et al. [14] trained an mLSTM RNN on Ama-
zon reviews to learn a language model and then used its

internal cell state from the last time step as features for the
subsequent supervised task of sentiment analysis of Ama-
zon reviews. This enabled the authors to match the state of
the art in their sentiment analysis dataset with significantly
less labeled data and to surpass it with the full training set.

3. Methods
3.1. PixelRNN

PixelRNN [2] uses the chain rule of probability to de-
compose the distribution of pixel values and directly mod-
els that distribution with a 2-dimensional LSTM [15]. It
uses masking to ensure that only the pixels previously seen
by the model are used to predict the next one. Masking
also ensures that the receptive field does not contain the
value being predicted, or any ”future” pixels. [2] presents
three separate architectures: PixelCNN, which employs a
fully convolutional network with visibility over local pix-
els; RowLSTM, which has a conal receptive field above the
pixel; and DiagonalBiLSTM, which has full visibility over
all previous pixel values. The receptive field of the Diago-
nalBiLSTM used is shown in figure 2, reproduced from [2].
We only use DiagonalBiLSTM, as the authors report that it
achieves the best performance.

Note that for computational efficiency, PixelRNN uses
convolutions in place of the standard matrix product inside
each LSTM cell.

[oi, fi, ii, gi] = σ(Kss ? hi−1 +Kis ? xi)

ci = fi � ci−1 + ii � gi
hi = oi � ci

In the equation above, ? represents the convolution oper-
ator, while � represents element-wise product. σ is a non-
linearity, according to the standard definitions.

For efficiency, Kis ? xi is pre-computed over the entire
image. First, we use a “mask A” convolution (shown in fig-
ure 1) to ensure the correct “visibility” for the pixel, then we
use a 1× 1 convolution to arrive at the correct dimensions.
We use Kis ? xi to represent this entire operation.

For hidden states, we would like to derive values for a
pixel given hidden states from the pixels above it, and to the
left of it. A skew operation (show in figure 2) ensures that
the desired receptive field forms a column in the skewed im-
age. The hidden state operation is computed column-wise
on this skewed image. That is, each Kss ? hi−1 computes
the hidden state components along an entire column i.

The PixelRNN first learns a W ×H × Z representation
of the image where Z is the LSTM hidden dimension size,
then uses output layers to produce a distribution W ×H ×
C×D for each image, where D is the domain of each pixel
channel. Note that to ensure correct masking, we need to
predict each channel separately. We use these intermediate
W ×H × Z representation for semi-supervised learning.
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Figure 1. Left: To generate pixel xi one conditions on all the pre-
viously generated pixels left of and above xi. Right: Diagram of
the connectivity inside a masked convolution. In the first layer,
each of the RGB channels is connected to previous channels and
to the context, but is not connected to itself. In subsequent layers,
the channels are also connected among themselves. This figure
and caption were extracted from Oord et al. [2].

Figure 2. Visualization of the input-to-state and state-to-state map-
pings for the three proposed architectures. This figure and caption
were extracted from Oord et al. [2].

3.2. Semi-Supervised DCGAN

By combining the DCGAN architecture and the work of
Salimans et al. [10], we created a semi-supervised DCGAN
model where the discriminator loss consists of three com-
ponents:

• Supervised loss: the cross-entropy loss from the pre-
dicted distribution over K (= 10) digit classes:
−Ex,y∼pdata

[log pmodel(y|x, y < K + 1)]

• Unsupervised loss: the loss from classifying unla-
beled data points as real, i.e. class 6= K + 1:
−Ex∼pdata

[log(1− pmodel(y = K + 1|x))]

• GAN sample loss: the loss from classifying gen-
erated images as fake, i.e. class = K + 1:
−Ex∼G[log pmodel(y = K + 1|x)]

Notice that an artificial “fake” class is added, corre-
sponding to the class K + 1. This approach allows us to
jointly train the discriminative network to serve two func-
tions: as a supervised classifier over K classes, and as a
discriminator between real and fake images (K real classes
vs. the “fake” class).

Noise FC DECONV x 2

{CONV-POOL} x 2
Unlabeled Image

Softmax

Labeled Image

FC

Figure 3. Architecture of the semi-supervised DCGAN model.
Notice that the discriminator network receives three inputs and
now serves as a classifier for target classes.

The generator uses batch-normalized [16] transposed
convolutional layers as originally suggested in the DCGAN
paper [9], with fully-connected layers in the beginning. Un-
like Salimans, et al., we used the regular GAN generator
loss instead of feature matching.

4. Dataset

We measure the performance of the semi-supervised
techniques on the MNIST digit classification dataset [4] and
the CIFAR10 dataset [5]. For both, the (semi-)supervised
model classifies a given picture into one of the possible
classes. Our baseline is a convolutional neural network
(CNN). We use the same architecture for the discrimina-
tor for GAN experiments to provide a fair comparison on
classification performance. One key metric of interest is
the number of labeled data points required to reach similar
level of performance as the baseline model because this is a
strong indicator that we are benefiting from unlabeled data.

5. Implementation

We have used TensorFlow [17] to implement the follow-
ing: our own implementation of PixelRNN (with Diagonal
BiLSTM) to produce image embeddings, a supervised CNN
classifier that takes either PixelRNN embeddings or raw im-
age pixels as input, and our own DCGAN-based model that
uses the semi-supervised learning framework suggested by
Salimans et al. [10]. We would like to acknowledge that
the open source PixelRNN implementation [18] written in
Theano [19] which is limited to MNIST and that we used
it for initial explorations until our own implementation was
complete.
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6. Experiments
6.1. Baseline CNN Architecture and Hyperparam-

eters

We use the following architecture which achieves
99.31% test accuracy on the full MNIST training set:

• Layer 1: Convolutional layer

32 5x5 filters, padding: same, activation: relu

• Layer 2: Max pooling layer

2x2, stride: 2

• Layer 3: Convolutional layer

64 5x5 filters, padding: same, activation: relu

• Layer 4: Max pooling layer

2x2, stride: 2

• Layer 5: Dense layer

output: 1024, activation: relu

dropout: 40% drop rate

• Layer 6: Dense layer (logits)

output: 10, activation: softmax

We use mini-batches of 100 examples and the Adam op-
timizer with learning rate of 0.001.

For the rest of this paper, we will focus on measuring
the performance of our semi-supervised models at different
amounts of labeled examples in comparison with the base-
line CNN. The expectation is that through semi-supervised
learning techniques the use of unlabeled data should allow
us to perform well even with much fewer labeled examples.

6.2. PixelRNN Model Details

We trained a DiagonalBiLSTM PixelRNN model with
the following hyperparameters for CIFAR-10. Like the au-
thors of [2], we used a batch size of 16, an input (mask A)
kernel size of 7× 7, LSTM hidden size of 128, and hidden
output layers of size 1024. We used an exponentially decay-
ing learning rate schedule, starting with 1e-4 and decaying
by a factor of 0.95 every 1000 batches.

However, we found our access to infrastructure and time
constraints to be limiting. Unlike [2], we trained only 5
residual layers instead of 12, which is all we could fit on the
memory of a single GTX1080 GPU. While no timing infor-
mation is given in [2] in the README of the PixelCNN++
[20], it is claimed that it took 10 hours on 8 TitanX GPUs to
reach a negative log-likelihood (NLL) of 3.0. Since the Pix-
elRNN trains even slower than PixelCNN, we would expect
this time to be longer. Note that we only cite [20] because
it provides a data point on required training time.

For results presented here, we trained the model for
75K iterations, which equates to approximately 2 days, and
reached a test set NLL of 3.59. Despite a higher NLL, how-
ever, we found samples generated to be visually similar to
those in [2]. A example can be found in Figure 4.

Albeit somewhat subjective, we observed that the train-
ing curve was still trending downwards. Aside from train-
ing longer, we also saw a large amount of fluctuations in
the NLL evaluated over our batch size of 16, and we be-
lieve that evaluating NLL periodically more accurately on a
larger validation set and selecting a good checkpoint would
have helped us discover a better model. However, such an
evaluation would have extended our training period signifi-
cantly, so we opted to take the last checkpoint of the model.

6.3. Samples from Generative Models

The generative models PixelRNN and DCGAN were
both trained on MNIST training data (without the labels).
The PixelRNN was additionally also trained on CIFAR-10.
As a sanity check to make sure our generative are work-
ing after having trained them we generate samples. Fig-
ure 4 shows samples of images generated by the models we
implemented. The generated digit images for MNIST re-
semble the images from the training data distribution, look
fairly crisp and are diverse. The CIFAR-10 based image
samples do not look as good, although some local patterns
similar to the ones in the real images did emerge.

Figure 4. Samples from DCGAN trained on MNIST (left) and Pix-
elRNN trained on CIFAR-10 (right).

6.4. Obtaining PixelRNN Embeddings

After training our PixelRNN model on MNIST train-
ing data, we used it to generate embeddings for MNIST
images by taking the hidden states at every pixel of each
image. This effectively transforms a single example into
a 28x28x64 input map, which was then fed as input fea-
tures for supervised classification. In other words, for each
MNIST image we obtained a 28x28x64 embedding contain-
ing features learned via the unsupervised training of the Pix-
elRNN model. Note that the PixelRNN’s hidden state is 64
dimensional and that there are 28x28 RNN time steps in-
volved, one for each pixel in the input image.
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6.5. Using PixelRNN Embeddings as Features

We experimented replacing image pixels with the Pix-
elRNN embeddings as input features to the same baseline
supervised architecture CNN outlined in section 6.1. Note
that the embedding for each example is a 28x28x64 vol-
ume. An embedding is fed to the first CNN layer as if it
was a 28x28 image with 64 channels. We then trained the
supervised model with varying amounts of labeled data by
taking subsets of the original MNIST training dataset. Fig-
ure 5 shows how the MNIST test accuracy varies with the
log of the number of training examples when using the em-
beddings vs using the image pixels. We also tried including
the image pixels as a 65th channel in the input features, but
that did not yield any performance gains.
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Figure 5. MNIST test set accuracy of using PixelRNN embeddings
vs. baseline usage of pixels. The classifier is a CNN for both.

In figure 5 one can see that using embeddings makes
much better use of smaller amounts of labels. In the extreme
low end with only 1 example of each digit (10 training ex-
amples in total) using embeddings yields a test accuracy of
69.04% versus 52.89% when directly using pixels. That is a
30.54% increase in performance by using embeddings alone
when training with just 10 examples. As the number of ex-
amples increases the gap decreases as expected due to the
diminishing return from embedding learned from the un-
labeled model. Better quality embeddings could potentially
increase that gap between using embeddings and image pix-
els.

6.6. The “Golden 10” Features

Each image PixelRNN embedding comprises 50,176
individual unsupervised features/real numbers (i.e.
28x28x64).

Using all of these features with just a linear classifier
yields 99% test accuracy.

We then trained a linear model with just the ten features

that maximize the Pearson linear correlation scores (instead
of 50,176) for each of the 10 digit classes in the training
set. With this setup we obtained test accuracy of 84.16%
indicating the existence of unsupervised features that are
strongly correlated with the high-level concept of digit types
in the embeddings. This is surprising in the sense that these
features were learned without any involvement of human
provided labels. Notice that this is in the similar vein as
[14], where a specific neuron trained without labels corre-
sponded directly to the sentiment of an Amazon review.

Table 1 shows the Pearson linear correlation scores for
the top feature for each digit class.

Table 1. Pearson correlation for top feature for each class
Digit class Pearson correlation
0 0.72
1 -0.79
2 -0.60
3 0.52
4 0.61
5 -0.57
6 0.79
7 0.62
8 -0.57
9 0.56

6.7. Visualizing the Influence of PixelRNN Time
Steps in the Quality of the Embedding Fea-
tures

We plot the weights of a linear classifier trained using
embeddings, MNIST labels and L1 regularization to find
which of the embedding time steps were the most predic-
tive. The L1 regularization enforces weight sparsity such
that less predictive weights tend to go to zero. This helps
increase the contrast between our most useful weights and
the least useful ones for visualization.

The full weight matrix for the linear classifier with
10 output classes and using embeddings as input is
28x28x64x10. For each class we have 28x28x64 weights.
By reducing on the last axis by taking the maximum abso-
lute value we obtain a 28x28 image of the largest weights
in absolute value. Figure 6 shows such weights for the digit
class 3.

We observe that embeddings from earlier time steps are
not very useful, the middle ones are very useful and the very
last ones (bottom-rightmost) are also not very useful. This
matches the following intuition: earlier steps/pixels have
accrued less information, the very last steps might have
”forgotten” the earlier information as they ingested mostly
dark pixels towards the end and the middle steps strike a
balance.
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Figure 6. Weights for digit ’3’ of linear classifier trained with Pix-
elRNN embeddings and L1 regularization. The warmer the color,
the higher the absolute value of the weight.

6.8. Semi-Supervised DCGAN

We trained semi-supervised DCGAN models with vary-
ing amounts of labeled data by taking subsets of the original
MNIST training dataset. Figure 7 shows how the MNIST
test accuracy varies with the log of the number of training
examples when using the semi-supervised DCGAN vs su-
pervised CNN.
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Figure 7. MNIST test accuracy, trained on subsets of training
data: baseline CNN vs. DCGAN-based model. Notice that the
DCGAN-based model performs much better than the baseline
model, especially when there are very few examples. It achieves
84% accuracy when only single image is provided for each class
for a total of 10 labeled training examples.

In figure 7 one can see that using a semi-supervised ob-
jective which basically multi-tasks between the supervised
CNN objective and the standard DCGAN objective makes
much better use of small amounts of labels. In the extreme
low end with only 1 example of each digit (10 training ex-
amples in total) the semi-supervised model achieves a test
accuracy of surprisingly high 84% vs 52.89% when only
using the supervised objective. That is a 58.8% increase in

performance when training with just 10 examples. Just as
in the PixelRNN embeddings case, as the number of labeled
examples increases the gap with the baseline decreases.

7. Conclusion
Generative models can learn representations that are

highly predictive of a high-level concept (e.g. sentiment
from a text, the digit of handwritten number). Often in su-
pervised learning, only human reviewers can provide such
information, which can be a scarce resource. PixelRNN
embeddings promoted an increase in test accuracy of up to
30% when only training with 1 example of each digit. Aug-
menting the supervised loss with the DCGAN’s unsuper-
vised loss allowed us to obtain 96% test accuracy with only
50 examples. Further improvements to generative models
and scaling up to larger amounts of unlabeled data could
yield even more performance gains on supervised tasks and
further promote the efficient use of very small amounts of
labeled data. The success of such semi-supervised learn-
ing techniques shows that one can still train a performant
model for supervised tasks in which collecting the neces-
sary amount of labeled data is prohibitively expensive.

8. Appendix
8.1. Code Release

We intend to open source our TensorFlow PixelRNN
implementation and our semi-supervised DCGAN. As far
as we are aware, there is no available open source semi-
supervised DCGAN implementation. Also, it will be the
first open source implementation that supports fitting im-
ages with multiple channels, as we demonstrate on the
CIFAR-10 [5] dataset. This is a non-trivial addition,
as implementing the correct masking over multiple chan-
nels requires complex management of network connec-
tions. In addition, the implementation benefits from Tensor-
Flow features such as model checkpointing and using Ten-
sorboard to monitor loss and generated samples over the
course of training. The DiagonalBiLSTM is also a com-
plex architecture that required implementation of a custom
masked convolutional kernel, a custom RNN cell, use of
the tf.contrib.rnn API, and complex management of
TensorFlow scopes via tf.make template. We hope
that this implementation will aid further research into sim-
ilar architectures, and also in general illustrate the usage of
these TensorFlow functionalities.

Since all three authors are employed by Google where
[2] was original implemented, we are waiting for internal
approval to open source this work.
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